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SUMMARY

A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations
in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity
moving and deforming under forces acting on the body. Since simulations of flow in complex geometries
with deformable surfaces require special treatment, the present approach combines a hybrid immersed
boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM)
for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as
an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear
grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated
to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and
communicates with the fluid through appropriate interface-boundary conditions.

The governing flow equations are discretized on a non-staggered grid layout using second-order accurate
finite-difference formulas. The discrete equations are integrated in time via a second-order accurate dual
time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize
the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control
points used for tracking the motion of the flexible body. The equations of the solid body are integrated
in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for
by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the
immediate vicinity of the body by reconstructing the solution along the local normal to the body surface.
The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface
of the body.

The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible
sphere in a fluid-filled channel. The behavior of a capsule in a shear flow was also examined. Agreement
with the published results is excellent. Copyright q 2007 John Wiley & Sons, Ltd.

Received 13 March 2007; Revised 19 June 2007; Accepted 21 June 2007

KEY WORDS: artificial compressibility; dual time stepping; immersed boundaries; hybrid immersed
boundary method; material point method; fluid–structure interaction

∗Correspondence to: Sumanta Acharya, Mechanical Engineering, Louisiana State University, Baton Rouge, LA
70803, U.S.A.

†E-mail: acharya@me.lsu.edu

Contract/grant sponsor: State of Louisiana

Copyright q 2007 John Wiley & Sons, Ltd.



2152 A. GILMANOV AND S. ACHARYA

1. INTRODUCTION

Flows involving fluid–structure interaction (FSI) represent a wide class of problems where it is
necessary to simultaneously consider the coupled motions of the fluid and the solid–structure. FSI
problems pose a great challenge since they involve complex moving boundaries and require the
solution of the equations for nonlinear elasticity, nonlinear fluid mechanics and their coupling. In
many applications, FSI involves complex geometries. Examples include inflating parachutes, flow
through blood vessels, dynamics of heart valves, swimming of aquatic animals and many others.

The solution of FSI problem requires four key issues to be addressed: (1) solution of the
governing flow equations; (2) solution of the equations of the deformable body; (3) tracking of the
solid–fluid interface; and (4) interface-boundary conditions representing the mutual influence of
the two environments. Since the solid–fluid interface can deform in space and time, the equations
for both the fluid and the solid have to be solved in complex domains that deform in space and
time. Therefore, computationally effective strategies for both the fluid and the solid have to be
devised, and represent the primary motivation for the present paper.

1.1. Strategies for solving flow equations with complex and moving boundaries

In the published literature two approaches are typically used to represent the interface: (1) a sharp
interface approach where the surface is tracked [1], and (2) a diffused interface method that utilizes
surface capturing methods [2]. The notation of diffused and sharp interface is based on how well
resolved is the interface: if the interface has a non-zero thickness, it is diffusive [1], and if the
interface has negligible thickness, it is sharp.

Popular body-fitted methods for solving FSI problems are classified as Lagrangian [3] and
arbitrary Lagrangian–Eulerian (ALE) methods [4, 5]. Body-fitted methods have the tremendous
advantage that the boundary condition is addressed exactly at the boundary surfaces and resolved
very accurately, because the moving boundary coincides at all times with one of the coordinate
surfaces. In pure Lagrangian methods [3], both the fluid and the deformable body are described in
a Lagrangian frame. For small and moderate displacements of the fluid such a description allows
accurate solutions, since errors caused by the convective fluxes through surfaces of cells that move
with the fluid are absent. A purely Lagrangian method was employed by Belytschko and Kennedy
[6] and Donea et al. [7] to study hydro-structural problems. However, for significant movement of
the fluid that is characteristic for most flow problems, without interpolation of the solution on a
new grid, rotation or shearing of the fluid can lead to immediate entangling of the grid cells. The
required interpolation increases the computational effort significantly.

ALE methods are less restrictive due to the moving grid that follows the deformable boundaries.
A characteristic property inherent to body-fitted grid methods like ALE consists of the ability to
adjust to a surface of a body and hence these methods [4, 5, 8] are better suited for carrying out
high Reynolds number simulations with high order of accuracy. However, due to the need for the
mesh to conform to the body at all times, they are inherently limited to problems with moderate
body deformations to avoid excessive cell skewing.

Moving grid methods referred to as deforming spatial domain/stabilized space–time method
have been studied by Tezduyar et al. [9] based on stabilized finite element (FE) method [10] for
the fluid and deformable body. The moving mesh for fluid was updated automatically till it became
too distorted, after which partial or full remeshing is carried out. The coupled, nonlinear equations
are generated from the FE discretization of the governing equations for the fluid flow, and the
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structural deformation and the motion of the flow mesh [9]. The method was used to simulate the
unsteady interaction of flow with a deformable parachute canopy.

The restrictions inherent to moving grid methods are absent in fixed-grid methods. How-
ever, these approaches also have certain disadvantages such as interface smearing, loss of accu-
racy, etc.

One approach to connect a Lagrangian body with the Eulerian solution of the fluid flow is the
cut-cell method (CCM) [11–17]. The boundary is considered as a sharp interface and the grid cells
adjacent to the interface are modified based on their intersections with the Eulerian grid. CCM
allows a clear distinction between the solid and the fluid by practically generating a boundary-fitted
grid around the body and are applicable to problems involving arbitrary deformations of a body
(or an ensemble of bodies) relative to the fixed Eulerian grid. However, such approaches lead to
a complex algorithm because of the large number of possible intersections between the fixed grid
and the surface of the deformable body.

The volume of fluid (VOF) method [1, 18, 19] consists of reconstructing the interface in each cell
containing a fractional fluid volume through a special surface function that is used to distinguish
one fluid from another. This function F defines the shape and motion of the boundary and it is
moved with the flow. The reconstruction could be performed with first-order accuracy [18], [20] or
with higher accuracy [21]. One of the main features of VOF methods consist of preserving mass
in a natural way.

The level set method was introduced by Osher and Sethian [22]. This technique relies on
an implicit formulation of the interface whose zero-level set always gives the location of the
propagating interface. These methods [23, 24] are attractive because they enable a convenient
description of topologically complex interfaces and are quite simple to implement.

The fictitious domain method (FDM) was introduced by Saul’ev [25] and has been primarily
applied to the interaction of fluid with rigid body particles by Glowinski et al. [26, 27]. The main
idea of FDM consists of coupling the moving rigid particles with the fluid by using a Lagrangian
multiplier. A newmethod combining the fictitious domain [26] and the mortar element [28]methods
for the computational analysis of FSI of Newtonian flows with slender bodies was developed by
Baaijens [29]. This method was extended to describe the interaction of a large leaflet motion with
the surrounding fluid domain [30].

The immersed boundary method (IBM) was introduced by Peskin [31] to study the flow in a
heart valve. The idea was useful in solving FSI problems with free movement of structure through a
fluid domain. The interaction between fluid and deformable body was realized through nodal forces
incorporated in the momentum equations. These external terms were spread over the computational
domain through smoothed approximation of the Dirac delta function and they satisfy boundary
conditions on the surface. Disadvantages include thickening of the interface which is inherent in
all diffusive interface methods. IBM [31] is only first-order accurate in space and the boundary
spreads over 3–5 grid nodes.

The immersed interface method (IIM) was proposed by LeVeque and Li [32] to further develop
the IBM of Peskin [33]. Instead of using a smooth approximation of the delta function, the IIM
used approximations of delta function with discontinuity across the boundary (jump conditions).
The IIM is therefore similar to the sharp-interface method. In [34, 35] it was shown that the IIM
has second-order accuracy and free from the shortcomings of IBM.

The immersed FE method was developed by Zhang et al. [36]. The equations for the fluid flow
and the solid body are modeled with the FE method. To avoid expensive grid regeneration, a fixed
Eulerian grid for the fluid was used. The connection between the Lagrangian solid body and the
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fluid was implemented as in the IBM, but instead of the Dirac delta function, the higher-order
reproducing-kernel particle method [37] was used.

An approach different from the classical IBM [31] approach that does not require the explicit
addition of discrete forces to the governing equations was developed by Mohd-Yusof [38] and
Fadlun et al. [39]. Similar to Cartesian methods and the IIM, this approach treats the solid boundary
as a sharp interface. In contrast to the Cartesian CCM that modifies the Eulerian grid cells in the
vicinity of the boundary and applies boundary conditions exactly on the boundary, this method
applies boundary conditions at the grid nodes closest to the solid boundary. The specific values
of the various flow variables at such near-boundary nodes are calculated by interpolating linearly
along an appropriate grid line between the nearest interior node, where flow variables are available
from the solution of the governing equations, and the point where the grid line intersects the solid
boundary, where physical boundary conditions are known. This approach can be classified as a
hybrid Cartesian/immersed boundary (HCIB) approach [39].

Gilmanov and Sotiropoulos [40] have developed a new HCIB formulation applicable to 3D
flows with arbitrarily complex immersed boundaries (IBs) moving with the prescribed motion.
This methodology maintains a sharp fluid–body interface by discretizing the body surface using
an unstructured, triangular mesh. The nodes of this mesh constitute a set of Lagrangian control
points, which are used to track the motion and reconstruct the instantaneous shape of the moving
IB. The reconstruction of the solution near the boundary is carried out by interpolation along the
normal to the surface of the body [41].

1.2. Strategies for solving structural deformations

To solve the equations of a solid deformable body the FE method is most commonly applied.
In this paper, we use material point method (MPM) [42–44] which has certain advantages over
standard FE approaches. One of the major advantages of MPM consists in being able to consider
large deformations, including situations with material rupture. This is possible due to the fact
that MPM is a meshless method and the equations are considered in an Eulerian frame. Other
advantage of MPM is its efficiency that enable a speedup by a factor of 4–10 in comparison with
standard FE methods [42].

An application of MPM to solve FSI problem is given in [45], which used the same grid for the
solid and fluid regions. Both regions are discretized by material points (MPs), and both the fluid
and the solid are solved for by the MPM strategy. In this case, it is possible to connect the fluid
and solid directly by the accumulation of the grid forces from the fluid and the membrane MPs at
the nodes of the background grid. To our knowledge, this is the only application of the MPM to
FSI problems, and utilizes the MPM for both the fluid and the solid regions. As discussed next,
we have taken different approaches where the MPM is utilized only for the calculations of the
structural deformations. This approach retains inherent advantages of Eulerian flow solvers and
integrates them with the MPM approach for the solid. Thereafter, as discussed above MPM has
specific advantages over the FE method.

1.3. Contribution of the present paper—a combined HIBM & MPM for FSI problems

In the present paper, the hybrid immersed boundary method (HIBM) for the fluid is combined
with the MPM for the solid and is presented as an effective strategy for solving FSI problems.
The HIBM is a cost-effective strategy for flow problems with complex moving interfaces. The
MPM has the advantages of resolving strong structural deformations without grid stretching since
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it uses an arbitrary distribution of nodal points and falls in the category of meshless methods. The
MPM nodes communicate with a background Cartesian mesh which is independent of the fluid
grid and on which the structural equations are solved for simplicity and computational efficiency.
The HIBM & MPM implementation, as presented in this paper, represents an unique approach for
solving FSI problems with arbitrary geometrical complexity of the structural deformations.

2. GOVERNING EQUATIONS

Let us consider a 3D deformable structure �s completely immersed in an incompressible fluid
domain � f (Figure 1). In the computational fluid domain, the fluid grid is represented by the
time-invariant position vector r. The MPs of the structure in the initial solid domain �s

0 and the
current solid domain �s are represented by Rs and rs(Rs, t), respectively. The subscript s is used
for the solid variables to distinguish the fluid and solid domains. In the fluid calculations, the
velocity v and the pressure p are the unknown fluid field variables. Calculation in the solid domain
involves the determination of the nodal displacement us , which is defined as the difference in
the current and the initial Lagrangian coordinates: us = rs − Rs . The velocity vs is the material
derivative of the displacement vs = dus/dt .

The unsteady, 3D, incompressible Navier–Stokes (NS) equations are solved using an efficient
finite-difference method that is second-order accurate both in space and time. A hybrid approach
that combines curvilinear grids, and the IBM was used to develop a powerful and very general
methodology for efficiently and accurately resolving all geometrical features of the flow. Imple-
menting the HIBM in curvilinear coordinates enables the accurate resolution of boundaries that are
not deforming or moving. The deformations of the solid body are calculated as part of the solution
procedure by implementing an FSI model. The mathematical model consists of the momentum
equations for the flow and the solid body, the continuity equations for the fluid and solid structure,
and the appropriate boundary conditions.

The unsteady, 3D, incompressible, NS equations in generalized curvilinear coordinates (repeated
indices imply summation l, r = 1.3) are(

�

J

)
�Q
�t

+ �

��l
(Fl − Fl

v) = 0 (1)

Figure 1. Type of boundary condition on the surface of the body. Solid line is the Neumann boundary
with the established force from the fluid.
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where

�= diag[�, 1, 1, 1]T

Q = [p, v1, v2, v3]T

Fl = 1

J
[V l , v1V

l + p�lx1, v2V
l + p�lx2, v3V

l + p�lx3]T

Fl
v = 1

J

1

Re

[
0, grrl

�v1

��r
, grrl

�v2

��r
, grrl

�v3

��r

]T

Here � is a positive constant, which is the pseudo-compressibility parameter, p is the static pressure
divided by the density, xi are the Cartesian coordinates, vi are the Cartesian velocity components,
Vr = vl�

l
xr are the contravariant velocity components and �lxm are the metrics of the geometric

transformation, J is the Jacobian of the geometric transformation, grl is the contravariant metric
tensor grl = �rxs�

l
xs , and Re is the Reynolds number.

As mentioned above the equations for the solid deformable body are given in Eulerian frame
because the Eulerian background grid is used to solve the solid body equations:

d�s
dt

+ �s∇ · vs = 0 (2)

�s
dvs
dt

=∇ · rs + �sbs (3)

vs = dus/dt is the velocity, �s is the density, rs is the Cauchy stress tensor, and bs is the specific
body force. In order to obtain the relationship between the stress and the strain, a Lagrangian
formulation is used. For analyzing strain in a material with large displacements and deformation two
coordinate systems and the relationship between them is considered. The first system is a material
(actual) coordinate system and the second system is a fixed spatial coordinate system. Deformation
is quantified by expressing the spatial coordinates of a material particle in the deformed state (rs)
as a function of the coordinates of the same particle in the undeformed state (Rs). Length changes
of material element can be determined from the known deformation fields and strain tensors may
be calculated. In Figure 2 let �s

0 be a fixed reference configuration of the undeformed body and has
components dRs = (dXs, dYs, dZs) and let �s be the deformed configuration and has components
drs = (dxs, dys, dzs) with respect to the Cartesian coordinates (X, Y, Z). An infinitesimal vector
dRs at the point Rs in the reference configuration is mapped to the infinitesimal vector drs at the
point rs in the deformed configuration. The displacement of the MP is defined as us = rs − Rs
(Figure 2), and the deformation gradient is given by [46]

Ft
0 = �rs

�Rs
(4)

The deformation gradient Ft
0 relates the infinitesimal vector dRs to the infinitesimal vector drs

and describes the translational, rotational and tensional motions that the material elements have
undergone from an initial time t = 0 till the current time t . A measure of strain can be defined by

E= 1
2 [(Ft

0)
TFt

0 − I] = 1
2 (C − I) (5)
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Figure 2. Diagram of deformation of the body.

or, in the tensorial form,

�i j = 1
2 (Ci j − �i j ) (6)

where E is the Green–Lagrange strain tensor, C= (Ft
0)

TFt
0 = ‖Ci j‖ is the right Cauchy–Green

deformation tensor, and I=‖�i j‖ is the unit tensor. Note that an important property of the defor-
mation gradient is that it can be decomposed into a product of matrices Ft+�

t corresponding to a
deformation from t till t + � and matrices Ft

0 corresponding to a deformation from initial time
t = 0 till t

Ft+�
0 =Ft+�

t Ft
0

Mechanical properties of a hyperelastic material can be characterized by a strain energy function
(the Helmholtz potential) W . For hyperelastic isotropic materials W is a function of the three
invariants of the deformation tensor E or C and can be written as

W =W (I1, I2, I3) (7)

where

I1 = trC=C1
1 + C2

2 + C3
3 , I2 = 1

2 [tr(C2) − (trC)2], I3 = detC

For nonlinear deformations of a solid incompressible, isotropic body, Mooney’s law [46] is used:
W = c1(J1 − 3) + c2(J2 − 3) + 1

2k(J3 − 1)2 (8)

where c1 and c2 are constants that are the characteristic properties of the material, k is the bulk
modulus that is several thousand times as large as their shear modulus, and the reduced in-
variants are

J1 = I1(I3)
−1/3, J2 = I2(I3)

−2/3, J3 = (I3)
1/2

A simpler model that is used for elastic isotropic material is the neo-Hookean constitutive
model [47]

W = c1(J1 − 3) + 1
2k(J3 − 1)2 (9)
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The Cauchy stress in Equation (3) is given by

�i j = 1

2
√
I3

(
�W
��i j

+ �W
��i j

)
(10)

In order to obtain a numerical solution for a given FSI problem, certain boundary conditions
(indicated by superscript�) must be specified for the above-mentioned systems of partial differential
equations (Figure 1). The boundary conditions for the fluid velocity are implemented on all the
immersed surfaces

v f = v� on �� (11)

where v� is velocity of the immersed surface; the boundary condition for the surface traction on
the solid surface is

r f · n� =p� on �� (12)

where r f is stress tensor of the fluid, p� is the traction vector, n� is the normal to the surface �.

3. METHODS FOR SOLUTION OF GOVERNING EQUATIONS

3.1. Numerical solution for the Navier–Stokes equations

To solve the system of governing equations (1), a pressure-based, Residual Smoothing Multistage
Pseudocompressibility Algorithm developed by Sotiropoulos and Constantinescu [48] was used.
This approach combines the pressure-based method [49] and artificial compressibility [50] method
to obtain an efficient diagonal pressure-based operator which was implemented in a four-stage
Runga–Kutta algorithm. Sotiropoulos and Constantinescu [48] have shown that the proposed
algorithm substantially enhances the damping of high-frequency errors on large aspect ratio meshes.
In papers [40, 41] the validation of the IBM using a Cartesian grid was demonstrated. A second-
order accuracy of the HCIB method was shown for the solution of problems with fluid flow past
arbitrary geometry or moving bodies. The IB is treated as a sharp interface and the solution in
its vicinity is reconstructed using interpolation along the local normal to the body. To facilitate
the calculation of the normal, the body is discretized with an unstructured, triangular grid. The
use of unstructured grid greatly enhances the generality of the method as it allows the modeling
of arbitrarily complex, 3D IBs and eliminates ambiguities encountered when the reconstruction
is carried out by interpolating along grid lines. A grid convergence study was carried out, which
showed that the method is second-order accurate. Validation studies were also reported for flow
induced by a sphere rotating steadily in a fluid that is at rest sufficiently far from the sphere as
well as for the flow induced by a 3D flapping wing in a confined domain. For both cases, good
agreement with benchmark solutions and laboratory measurements were obtained. Since the flow
solver has been published [48] and validated [40, 41] additional details are not given here.

3.2. Numerical solution of the equations for the solid deformable body

The MPM method is implemented here in a meshless framework. The solid domain is covered
with an arbitrary number of MPs. MPs are classified as internal and external (relative to the surface
of body). Set of external MPs is triangulated on the surface in such a manner that it is possible to
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Figure 3. Computational domain and background grid with discrete material points.

define normals to each point on the surface. Normals are necessary for the implementation of the
HIBM method, since these normals are used for the interpolation of the fluid variables at the IB
nodes.

Let rns , s = 1, . . . , Ns denote the current position of the MPs at time tn (Figure 3). Each MP
has an associated mass, ms, density, �ns , velocity, v

n
s , Cauchy stress tensor, rns , and strain, �ns at

time tn . MP mass should remain constant with time: mn
s =ms = const, insuring that the continuity

equation is satisfied.
Mass of the each MP is determined on the basis of density and geometry of the object. For

example, for problems where the body is initially a sphere, the total weight of each MP is cal-
culated as

ms = 4
3�R

3
0�s0/Ns

where R0 is the initial radius of the sphere, �s0 is the initial density. For problems with thin shells
or membranes the mass of MP is defined, as

ms =
(

NL∑
l=1

�s0h0�Sl

)/
Ns

where h0 is the initial shell thickness, �Sl is surface area of lth triangular element, NL is number of
triangular elements discretizing the surface. All variables are updated at each time step in order to
satisfy Equation (3). At each time step, information from the MPs is interpolated to a background
computational grid. This background grid is Cartesian and chosen only for the computational
simplicity to solve the deformable body equations. In a more general case, one may design the
background grid to be curvilinear.

To obtain a system of algebraic equations, the momentum equations (3) are converted to a weak
form by means of standard FE method techniques:∫

�s

�s

[
dvs
dt

· w + (rs ⊗ ∇w)/�s

]
dV =

∫
��

�sp
� · w dS +

∫
�s

�sbs · w dV (13)

where w denotes the test function, p� is a specific traction vector (i.e. traction divided by mass
density), �s is the current configuration, �� is the part of the boundary with a prescribed traction
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and w is assumed to be zero on the boundary with a prescribed displacement (for example, fixed
boundaries).

Since the mass density of the particle can be written as

�s(r, t) =
Ns∑
s=1

ms �(r − rs) (14)

Equation (13) converts to the following

Ns∑
s=1

ms

[
w(rs, t) · dv

dt
(rs, t)

]
(15)

=
Ns∑
s=1

(ms/�s(rs, t))[−rs(rs, t) ⊗ ∇w(rs, t)] (16)

+
Ns∑
s=1

ms[w(rs, t) · p�(rs, t)h−1(rs, t) + w(rs, t) · bs(rs, t)]

where h(rs, t) is the thickness of a shell or membrane (in this paper we consider only such objects).
In Equation (14), �(r−r0) denotes a Dirac delta function with dimensions of the inverse of volume
about a point r0.

For 3D problems, a background mesh is constructed from 8-node cells. These cells are then
employed to define standard nodal basis (shape) functions Si (rs), associated with spatial nodes,
ri (t) , i = 1, . . . , Ng , where Ng is number of nodes of the background grid. Further, in all notations
we will use subscript index s for MPs and subscript index i ( j) for the background grid nodes.
The nodal basis functions are assembled from standard FE shape functions, so that an 8-node cell
can use the shape functions given by

S1(rs) = (1 − �s)(1 − 	s)(1 − 
s)

S2(rs) = (1 − �s)	s(1 − 
s)

S3(rs) = (1 − �s)	s
s

S4(rs) = (1 − �s)(1 − 	s)
s

S5(rs) = �s(1 − 	s)(1 − 
s)

S6(rs) = �s	s(1 − 
s)

S7(rs) = �s	s
s

S8(rs) = �s(1 − 	s)
s

where 0��s�1, 0�	s�1, and 0�
s�1 are the natural coordinates of the MP s (Figure 4).
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Figure 4. Illustration of the position of a material point s in the local curvilinear element (�, 	, 
).

Coordinates rs , displacements us , velocities vs , and test function ws can then be represented as
follows:

rs =
Ng∑
i=1

ri Si (rs), us =
Ng∑
i=1

ui Si (rs)

vs =
Ng∑
i=1

vi Si (rs), ws =
Ng∑
i=1

wi Si (rs)

Substituting the expressions for acceleration and test functions into Equation (15) yields

Ng∑
i=1

wi ·
Ng∑
j=1

mi j
dv j

dt
= −

Ng∑
i=1

wi ·
Ns∑
s=1

(ms/�s)rs · ∇Si |rs +
Ng∑
i=1

wi · p�,t
i +

Ng∑
i=1

wi · bs,i (17)

Since, in general wi is non-zero, the discrete form of governing momentum equation (17) becomes

Ng∑
j=1

mi j
dv j

dt
= finti + fexti , 1�i�Ng (18)

In Equation (17) mass matrix is given by

mi j =
Ns∑
s=1

msSi (rs)S j (rs)

The mass matrix is simplified with the corresponding lumped nodal masses mi = ∑Ns
s=1 msSi (rs)

by neglecting non-diagonal terms and introducing a slight amount of numerical dissipation [51];
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therefore, the approximation of momentum equations is given by

mi
dvi
dt

= finti + fexti (19)

where the internal force vector is given by

finti =−
Ns∑
s=1

(ms/�s)rs · Gi (rs) (20)

with Gi (rs) =∇Si |rs = [�Si/�x, �Si/�y, �Si/�z]Trs . The external force vector is

fexti =p�,t
i + bs,i (21)

where discrete-specific traction vector is

p�
i =

Ns∑
s=1

msp�(rs, t)Si (rs)h−1(rs, t) (22)

and the body force is discretized as

bs,i =
Ns∑
s=1

msbs(rs, t)Si (rs) (23)

3.3. MPM algorithm

The following steps are performed at each physical time step in the solid structure solver:

(1) For each MP perform the mapping operation from particles to the nodes of a background
mesh:

mn
i =

Ns∑
s=1

msSi (rns )

where mn
i is the mass at node i at time tn , Si (x) is the nodal basis (shape) function

associated with the node i , rns and ms are the locations of the particle at time tn .
(2) Map the momentum from the MP to the nodes of the cell containing these particles:

mn
i v

n
i =

Ns∑
s=1

msvns Si (r
n
s )

(3) Find the internal force vector at each point on the background mesh:

fint,ni =−
Ns∑
s=1

ms

�ns
rns · Gi (rns )

where Gi (rns ) =∇Si (rns ) is a gradient of the basis functions with the ∇Si components
given by

�Si
�x j

= �Si
��s

(
��s
�x j

)
+ �Si

�	s

(
�	s
�x j

)
+ �Si

�
s

(
�
s
�x j

)
(x j = x, y, z)
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(�s, 	s, 
s) are the coordinates of MP in the local coordinate system (background mesh)
for the structure (Figure 4). For Cartesian coordinates, the components of the internal force
are computed as

f int,nx,i = −
Ns∑
s=1

ms

�ns

[
�Si
�x

(�xx )
n
s + �Si

�y
(�yx )

n
s + �Si

�z
(�zx )

n
s

]

f int,ny,i = −
Ns∑
s=1

ms

�ns

[
�Si
�x

(�xy)
n
s + �Si

�y
(�yy)

n
s + �Si

�z
(�zy)

n
s

]

f int,nz,i = −
Ns∑
s=1

ms

�ns

[
�Si
�x

(�xz)
n
s + �Si

�y
(�yz)

n
s + �Si

�z
(�zz)

n
s

]

(4) Find the external force vector at the background mesh using the dynamic boundary con-
ditions (12):

fext,ni = p�,n
i + bns,i

(5) Update the nodal velocity:

vLi = vni + �t

mn
i
(fint,ni + fext,ni )

(6) Map the current velocities back to the MP:

vn+1
s = vns +

Ng∑
i=1

(vLi − vni )Si (r
n
s )

(7) Compute the displacement and current position of MPs:

�uns = �t
Ng∑
i=1

vLi Si (r
n
s )

rn+1
s = rns + �uns

(8) Map the displacement of MPs to the background grid:

�uni =
Ns∑
s=1

�uns Si (r
n
s )

(9) Compute the deformation gradient matrix during the time step �t :

Fn+1
s,n =

Ng∑
i=1

[Gi (rs) · �uni + I ]

(10) Compute the deformation gradient matrix from t = 0 to t = tn+1:

Fn+1
s,0 =Fn+1

s,n Fn
s,0
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(11) Compute the Green–Lagrangian strain tensor:

en+1
s = 1

2 [(Fn+1
s,0 )TFn+1

s,0 − I ]
(12) Calculate the stresses by constitutive equation:

rn+1
s = r(en+1

s )

At the end of these steps, the complete characteristics of the deformable body will be found.
Steps (6) and (7) define the new velocity and position of the solid, respectively. These values will
be used for the solution of the fluid equations.

Note that this MPM algorithm can be used for volumetric bodies. To solve structures that are
thin membranes and shells we have changed step (3) of this algorithm to ensure the absence of
normal forces [52] from the stresses on the membrane.

(3a) Consider MP s and adjacent triangular elements (Figure 5). For each line originating from
s we define extension ratios �ns,k of linear element k:

�ns,k = dsnk /ds0,k

where dsnk and ds0,k are the stretched and the original undeformed lengths of the
element k.

(3b) Thereafter, by using constitutive equation [53] we define stresses Ts,k as

T n
s,k = 4h0

(
1 − 1

(�ns,k)
6

)
(c1 + (�ns,k)

2c2)

(3c) The full internal force at MP is defined by summation over all linear elements k originating
from s:

fints =∑
k
Ts,kek

where ek is tangential vector along the kth linear element.
(3d) The internal force vector at each point on the background grid is found as

finti =
Ns∑
s=1

fints Si (rns )

With respect to this procedure there will be no normal components to the surface of the
membrane. This model for the membrane is similar to a model for a polymeric net [54], where the
energy functional of a free polymer is considered as the energy of a chain of connected springs.

3.4. Treatment of flexible immersed boundaries

The MPM will define a new position and velocity for the solid body at each time step. The flow
equations have to be then solved around the newly defined surface of the body. In this section, we
discuss the numerical treatment in domains with complex, flexible, IBs, which move under forces
from the fluid. Our approach consists of the local reconstruction of the solution near the IB such
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Figure 5. Illustration of how the internal force at material point s for a membrane is calculated.

Figure 6. Schematic illustrating the search algorithm for identifying the IB nodes for a complex immersed
boundary. Circles (open) are the near-boundary nodes that are identified in the first step of the search
procedure. Open circles mark the IB near-boundary nodes. Black nodes are material points. Red nodes

are situated on the surface of the body.

that Equations (11) and (12) are satisfied exactly on the surface of the body at every instant in
time.

In the HCIB formulation proposed in [41, 40] the IB is treated as a sharp interface. Boundary
conditions are applied at nodes in the immediate vicinity of the IB (see Figure 6) by reconstructing
the solution along the well-defined normal to the body direction using information from the fluid
nodes and the known solution on the surface of the body. To facilitate the reconstruction of the
solution in the vicinity of arbitrarily complex IBs, the IB is discretized using an unstructured,
triangular mesh with M triangular elements of size similar to the grid spacing in the vicinity of
the body.

First, we locate all grid nodes that are in the immediate vicinity of the body. At this stage we
do not distinguish between internal and external nodes to the body but rather seek to identify all
near-boundary nodes located within a small search radius ds0 from some region of the body. These
nodes are marked with open circles in Figure 6. A grid node will be designated as a near-boundary
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node if its position vector rnb satisfies the following condition:

min
m=1,M

|rnb − rm+1/2|<ds0 (24)

where rm+1/2 is the position vector of the centroid of the mth triangular element on the interface,
ds0 is a prescribed search radius (see Figure 6), which is set approximately equal to the minimum
mesh spacing in the vicinity of the body. After the above search has been completed a total number
of NB grid nodes (i.e. nb= 1,NB) have been identified.

In the second step of the algorithm we separate the NB near-boundary nodes into nodes internal
and external (IB nodes) to the body as follows. For every near-boundary grid node nb, we first
identify all triangular elements (and their position vector rm+1/2) located within a sphere of radius
ds0 centered at node nb and for these triangular elements we examine the sign of the scalar product

nm+1/2 · (rnb − rm+1/2)

If nm+1/2 · (rnb − rm+1/2)>0 for at least one boundary node rm+1/2 within the local search
neighborhood, then the grid node rnb is external to the body (see node A in Figure 6). If nm+1/2 ·
(rnb − rm+1/2)<0 for all triangular elements rm+1/2 within the local search neighborhood, then
the grid node rns is internal to the body (see node B in Figure 6).

After the IB nodes have been determined, boundary conditions need to be specified for the
velocity field and pressure at all IB nodes at the new physical time level n + 1. These boundary
conditions consist of Dirichlet conditions for the velocities (no-slip conditions, fluid velocity on
the surface equal to the velocity of the rigid or deformable body) and Neumann conditions for
the pressure (derived from the projection of momentum equations on the normal to the surface).
These boundary conditions, along with the flow solution at the interior nodes adjacent to the IB
points, are used to define the values at the IB points. Additional details are described in [41].

It is important to note that at some IB nodes located in regions where the curvature of the body
is changing rapidly in space, the projection onto the surface of the body may not be uniquely
defined or even exist. At such nodes, boundary conditions are reconstructed by interpolating along
the line defined by the IB node and the nearest node on the surface of the body.

4. AN FSI ALGORITHM

The FSI algorithm consists of successive solutions of fluid and solid equations with communication
between them at each time step. If all characteristics of the fluid (vnf , p

n
f ) and the solid (rns , v

n
s ,

�ns ) are known at some time tn , the sequence of FSI algorithm is as follows:

(1) Solve the flow equations. Solve Equations (1) for the new fluid velocity vn+1
f and pressure

pn+1
f .

(2) Boundary conditions for the solid body coupling the fluid and the solid. Interpolate the full
stresses from the fluid pn+1

i j = − pn+1
f �i j + �n+1

i j onto the surface of the body and evaluate

the external forces p�
s for all MPs. Here, �n+1

i j are the viscous stresses in the fluid.
(3) Solve structure equations. Interpolate masses ms , momentum msvs , of MPs onto the back-

ground grid. Find internal fint,n+1
i and external fext,n+1

i forces. Solve the equations of solid
body Equations (19), updating the new position rn+1

s and the velocities vn+1
s of the MPs.
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(4) Boundary conditions for the fluid. Identify the IB nodes and evaluate the velocities and
pressure at IB nodes.

(5) Return to the solution of Equations (1) for the next time step.

This algorithm is implemented explicitly, which implies that the sequence of fluid and solid
solutions are implemented one after another.

5. RESULTS AND VALIDATION

The goal of the present paper is to develop and validate the combined HIBM & MPM as a strategy
for solving FSI problems with strong structural deflections. To the best of our knowledge this is
the first time that a sharp-interface method for the fluid (e.g. HIBM) has been integrated with the
MPM for the structure and successfully applied to simulate flows past 3D moving bodies with
deforming or moving surfaces.

5.1. Inflating a thin sphere

We have solved the problem of a spherical incompressible thin shell inflating under the action of
internal pressure. The objective of this initial simulation is to test the implementation of the MPM
alone with a problem that has an analytical solution. Although this is a 1D problem, we have used
the whole 3D algorithm to solve equations of the solid body. For Mooney’s material, an analytical
solution that provides the relation between the radial deformations and the pressure is known [53]

p= 8h0
r0�1

(1 − �−6
1 )(c1 + c2�

2
1) (25)

Depending on the ratio c2/c1 there are possible existence of anomalous regime [53] when radius
increases with a decrease in pressure inside the sphere. We have used c2/c1 = 0.5 where there is
monotonic strain–pressure relationship, and for the validation test we have used c1 = 20, c2 = 10.
The sphere surface is discretized with 350, 1026, and 3782 triangular elements. In order to obtain
the needed stationary solution we have used a quasi-stationary approach. The pressure inside the
sphere was increased incrementally and at each value of the internal pressure the solution was
calculated. As seen in Figure 7 the agreement of our numerical solution with the analytical solution
is rather good and it converges to the exact solution with decreasing of the space discretization of
the surface.

5.2. Rigid sphere falling in a box

To validate the FSI algorithm we solved a problem of a sphere falling in a box (solid side and
bottom walls and open top) under the action of gravitational forces. We compared the data from
the experiments of ten Cate et al. [55] with our numerical simulation obtained by the solution
of the coupled system of fluid and solid equations. The complete HIBM & MPM algorithm was
therefore implemented and tested.

ten Cate et al. [55] performed experimental and computational studies of a nylon sphere
with a diameter d = 0.015 m and density �s = 1120 kg/m3 falling in the box with the size of
0.1× 0.1× 0.16 m3 under the action of gravitational force. Initial position of the particle was
at a height h = 0.12 m from the bottom of the box (Figure 8). As the particle is rigid we have
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Figure 7. Comparison of the calculated variation of sphere radius with pressure with the analytical solution
[53]. Solid line is an exact solution, and triangles, squares, and circles are the computed data for 350,

1026 and 3782 triangular elements, respectively.

Figure 8. Picture of a box used in the falling sphere experiment of [55].

used the full FSI algorithm with very high mechanical properties of the material of the sphere:
c1 = 105, c2 = 105, where c1 and c2 are constants describing the properties of Mooney’s mate-
rial [53].

Calculations were carried out for Reynolds number Re= 11.6 and 31.9 as per the property and
flow date given by ten Cate et al. [55], and is given in Table I. The Reynolds number was defined
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Table I. Fluid properties in the experiments of ten Cate et al. [55].
# Experiment � f (kg/m3) � f (10−3 Pa s) u∞ (m/s) Re

1 962 113 0.091 11.6
2 960 58 0.128 31.9

Figure 9. Simulation of a falling sphere in a tube: (a) Re= 11.6 and (b) Re= 31.9. Fluid grids
100× 100× 160 were used. Experimental data [55] are shown in open circle.

on the basis of the terminal velocity of the particle. To discretize the computational region we
used a grid with 100× 100× 160 grid nodes. A physical time step of �t = 10−2 was used. The
sphere surface was discretized with 3782/1893 triangular elements/nodes. These grid sizes were
found to give grid-independent results. In accordance with experiment, no-slip boundary conditions
were established along all the walls of the box and non-reflecting boundary conditions [56] were
implemented on the top boundary.

Figure 9 shows the time history of velocities of the particle falling in the box for Re= 11.6 (a)
and Re= 31.9(b). As is seen from Figure 9, the particle experiences an initial acceleration and
eventually achieves a steady terminal velocity. Comparisons of our solutions with the experimental
data [55] show a very good agreement thus validating the FSI algorithm for a rigid material.

5.3. Rigid and elastic sphere falling in a channel

Figure 10 shows the streamlines and pressure contours for the rigid sphere falling in an unbounded
channel at three time instances. The sphere is seen to retain its shape during its descent, symmetry
across the channel centerline is reasonably well preserved, and the separation zones expectedly
originate at the 90◦ position on either side.

As an example of FSI problem where the solid object deforms under action of fluid stresses, we
have extended the above problem and solved it for a falling soft sphere in an unbounded channel.
The sphere material properties were arbitrarily selected and for Mooney’s law c1 = 20, c2 = 10
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Figure 10. Pressure contours and streamlines for a falling rigid sphere at three time instances.

Figure 11. Pressure contours and streamlines for a falling soft sphere at three time instances.

were used. Calculations were carried out on a 71× 71× 141 grid with 7770 triangular elements on
the surface of the sphere. Here, non-reflecting boundary conditions were used on all sides of the
computational region. Figure 11 shows the pressure contours and streamlines at three time levels.
In order to show more clearly the deformation of the sphere we have used a specific viewing
angle and the observed asymmetry is due to the viewing orientation. It can be seen in Figure 11
that considerable deformation of the sphere occurs under the action of the stresses that act on the
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Figure 12. Capsule in a shear flow.

Figure 13. Comparison of computed Taylor parameter with data from Egleton and Popel [47].
Grid refinement was performed for three grids: 212, 413, and 813 for G = 0.05. Dashed

line represents the data for G = 5.

surface of the sphere. The originally spherical solid body assumes a kidney-beam shape with a
pronounced concave arch along the bottom. The pressure contours can be seen to be considerably
altered relative to the rigid sphere leading to a higher difference of the pressure between the front
and back side of the sphere.

5.4. Capsule in a shear flow

As an extension of the above problem, we consider the behavior of an initially spherical capsule
in a shear flow. This problem represents a model of a biological deformable red blood cell (RBC)
which is deformed under the action of shear stresses and pressure acting on its boundary surface.
We use solution of this problem as a validation test using the results in [47] for conformation.
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Figure 14. Deformation of a capsule in a shear flow. Pressure contours and streamlines. Instantaneous
snapshots of the shape of the capsule at the y = 0 diametral plane depicting the stages of the flow evolution
toward steady state for G = 0.05: (a) plane y = 0 and (b) the same pictures with viewpoint  = 45◦.

We consider this RBC as a capsule freely suspended in a viscous shear flow. The capsule consists
of an elastic membrane containing another viscous fluid. We used the same fluid properties both
inside and outside of the capsule. The shear flow is generated by initial conditions and by imposed
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Figure 15. Deformation of a capsule in a shear flow. Pressure contours and streamlines. Instantaneous
snapshots of the shape of the capsule at the y = 0 diametral plane depicting the stages of the flow evolution

toward steady state for G = 5.0: (a) plane y = 0 and (b) the same pictures with viewpoint = 45◦.

shear velocity boundary conditions on left and right sides of the channel (Figure 12). In the
flow direction periodic boundary conditions are used. The deformations of capsules have been
considered by several authors (see, for example, [47, 54, 57]).
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In order to compare our computational data with [47] we used a neo-Hookean membrane strain
energy given by

W = Eh

6
(�21 + �22 + �23 − 3)

where E is Young’s modulus, h is the membrane thickness, �1, �2, and �3 = 1/(�1�2) are principal
strains. One of the characteristic parameter of the behavior of the capsule in shear flow is the
dimensionless shear rate number [57] given by

G = ��̇a/�RBC

where � is the fluid viscosity, �̇ is the shear rate, a is the initial radius of the capsule, �RBC = Eh is the
extension modulus of the membrane. We carried out simulations for the following set of parame-
ters: �= 1.2× 10−3 Pa s, a = 3.3× 10−6 m, �RBC = 6× 10−6 Pam, �̇ = 75, 7500 s−1, leading to a
G = 0.05, 5.0.

Grid refinement study was made for three grids 213, 413, and 813 with mesh sizes h = 0.2, 0.1,
0.05, respectively. Corresponding to each of these fluid grids, different number of material nodes
Ns = 350, 515, 1893 on the surface of the membrane were used.
Figure 13 shows a comparison of the computed Taylor parameter

Dxy = (L − B)/(L + B)

with the published data. Here L is the length of the cross section of the capsule and B is the
breadth. The comparison was made for G = 0.05 and there is good agreement with [47] for the
mean terminal value of Dxy . Difference in the time evolution of Dxy is due to the difference in
the initial conditions of the problem. In [47] the capsule was held stationary until the shear flow
was fully developed. In our case, the capsule was put in the developing shear flow (i.e. for t<0,
the capsule and channel walls were stationary and at t = 0, the walls begin moving to generate
shear) and deformations of the capsule were delayed.

Figures 14 and 15 show the results of solution of the FSI problem of deformation of an initially
spherical soft capsule with time for G = 0.05 and 5, respectively. The deformation of the capsule
from the initial shape is clearly evident particularly for G = 5.0, where the capsule is showed into
a pancake shape. Two perspectives are shown in Figures 14 and 15. It is clear from Figure 15 that
there is a significant stretching of the capsule shell.

6. CONCLUDING REMARKS

We have developed an effective numerical method for simulating fluid–structure interaction (FSI)
problems with large deformations of solid body. The method developed uses the hybrid immersed
boundary method (HIBM) for resolving complex boundaries for the fluid flow, and couples this
with the material point method (MPM) for the structural stresses and deformation. The combined
method is implemented in the framework of a finite-difference procedure on curvilinear grid.

The benefits of the proposed FSI approach is based on using effective methods for both the
fluid and the structure solvers. HIBM of second-order accuracy allows the solution of complex
arbitrary bodies immersed in the fluid more effectively compared with the body-fitted methods
like arbitrary Lagrangian–Eulerian method with grid regeneration at every time step. MPM, as a
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structure solver on a Cartesian background grid, is more efficient in comparison with finite element
method and, as mentioned earlier, MPM allows the solution for arbitrary large deformation without
numerical limitations.

The methodology is ideally suited for flow problems with initially complex geometries where
the surfaces undergo large structural deformation. The methodology is demonstrated on a number
of simple test cases and show reasonable qualitative and quantitative agreement with the published
results. Although all the results presented here were obtained on the Cartesian grid, we have
developed this method for a general case with curvilinear grids. This strategy for simulation of
iris deformation in a human eye has been presented in [58, 59].
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